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o Network wave equation

3/29



Discrete Gradient

A graph G(V, &) with vertex set V of cardinality N and edge set £ of cardinality M.
Incidence matrix Q € My m(Z)

—1 if branch e starts from node j,
Qe =4« 1 if branch e finishes at node j, (1)

0 otherwise.

Gradient of graph : V= Q7.
9
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4 Paw graph.
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Discrete conservation laws

Generalize conservation laws % + % =0.

Array of inductances and capacities U 3
)
dv T. Ll N/—L
C—+V'i=s, (2) — G
dt L —g— 2
di 4
L— —Vv=0. (3)
dt G G
. - - 4
v=(v1, va, v3, vg)" voltage.
i=(h, f, i3)T current. J— G
s : current applied to each node.
Electrical Network.
SO0 o
C= 2 L=10 L, 0
0 0 G 0 0o 0 L
0 0 0 G 3
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Graph wave equation
d2v T ds
— L7V v=—_. 4
Cdt2 +V Vv T (4)
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Network wave equation

d?v _ds
cY Lt
Fro VL'V =% (5)
Lt —L;t 0 0
— _ _L]__l L1—1_|_L2—1_|_L3—1 _ 2—1 —Lgl
VLTV = 0 7L2_1 L2_1 0 . (6)
0 —L3t 0 L3t
d?v
Graph Laplacian :
A=V'V. (8)

/. 1 -1 0 0
’7'\ A_ |-l 3 -1 -1

Paw graph.
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Graph Laplacian

Adjacency matrix of G(V, &):

1 iff e &(G) (i~))
Ai { 0 otherwise ©)
Vertices degree matrix: N
D =d; =Y Aj. (10)
j=1
Laplacian matrix:
A=V'V=D-A (11)

Example:

/. 1 -1 0 0
11—

\‘ A=lo 1 1 o

Paw graph.
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Spectrum of graph Laplacian

Laplacian matrix A: real, symmetric

8/29

Avi=X Vi, je{l,...,N}. (12)

o Eigenvalues A\ =0 < Ay < -+ < Apy.
e Eigenvectors v/ : orthonormal.
1)’

@ A\; =0 — Goldstone mode v! = ﬁ (1,1,...,

o Multiplicity of the eigenvalue 0 = number of connected components of G.



Linear normal modes

d?u
P Au (13)
AVj:Ajij j€{17...7N} (14)
N
u(t) = Z aj(t)VJ (15)
Jj=1
d?a;
7dt21 = —)\jaj. (16)

Linear normal modes (linear periodic orbits)

. dal N ) - daj sin (\/Tjt) J
u(t) = 5(0) t+ 31(0)} v ; aj(0) cos (\/Xt) + E(O) T v

(17)
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Nonlinear normal modes 7

o —Au+ N(u). (18)

@ On-site nonlinearity: the discrete ®* model

d?u
—— =—-Au-— 1’ 19
i (19)
where v = (v, u3,...,u3)7.

o Aoki (Phys.Rev.E 94, 2016): chains and cycles.

o Caputo, Khames, Knippel, Panayotaros (J.Phys.A, 2017): general networks.

o Intersite nonlinearity: the Fermi-Pasta-Ulam-Tsingou model

ij == (Au); = > (i —w)?, ie€f{l,... N}, (20)

ki

o Bountis, Chechin, Sakhnenko (Int. J. Bif. Chaos, 2011) : chains and cycles.
o Caputo, Khames, Knippel (2022): general networks.
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© On-site nonlinearity: nonlinear normal modes
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Existence of nonlinear periodic orbits

d?u
F =—Au— Ll3. (21)
AV = )\ (22)
Ansatz u(t) = a;(t) v/
. d?a; ]
Vi oz = 17N — 3 ()] vin, (23)
Equations (23) are satisfied for v/, = 0.
d?a: . .
B = NG W) (v £ 0). (24)
Equations (24) are consistent if and only if
(V))=C, Yme{l,...,N}. (25)
1 .
C:m, S=card{s: v/ =0}. (26)
1.
—vl e€{0,1,-1}, Vme {1,...,N}. 27
Nra { } { } (27)
d?a;
dej = —)\jaj - C af. (28)
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Nonlinear periodic orbits

Nonlinear periodic orbits: nonlinear normal modes

nonlinear periodic solutions associated to eigenvectors composed of {0, 1, —1}.

@ Goldstone mode: {+1}.
@ Bivalent modes: {+1,—1}.
@ Trivalent modes: {+1,—1,0}.

Definition (Soft node "Caputo, Knippel and Simo 2013")

A node s of a graph is a soft node for an eigenvalue \ of the graph Laplacian if
there exists an eigenvector v for this eigenvalue such that v; = 0.
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Bivalent and trivalent graphs

Definition (Bivalent graph)

A graph is bivalent if it has an eigenvector of the Laplacian composed of
{—1,+1}. This vecteur is called bivalent.

\

Definition (Trivalent graph)

A graph is trivalent if it has an eigenvector of the Laplacian composed of
{-1,+1,0}. This vecteur is called trivalent.

-1 1 -1 ! 1 0 -1

—

Caputo, Khames, Knippel (Discrete Applied Mathematics, 2019) : characterization
of graphs having bivalent and trivalent eigenvectors
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© Bivalent and trivalent graphs
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Transformations of graphs

Theorem (Link between two equal nodes, Merris 1998)

Let v be an eigenvector of A(G) affording an eigenvalue X. If vi = v;, then v is an
eigenvector of A(G') affording the eigenvalue \, where G’ is the graph obtained

from G by deleting or adding the edge ij depending on whether or not ij is an edge
of G.
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Transformations of graphs

Theorem (Principle of reduction and extension, Merris 1998)

For a graph G(V, &) fix a nonempty subset W of V. Delete all the vertices in V\W
that are adjacent in G to no vertex of VW. Remove any remaining edges that are
incident with no vertex of WW. Suppose v is an eigenvector of the Laplacian of the
reduced graph G{W?} that affords \ and is supported by W in the sense that if

vi # 0, then i € W. Then the extension v’ with vj/ =v; for j € W and VJ/ =0
otherwise is an eigenvector of A(G) affording \.
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Transformations of graphs

Theorem (Replace an edge by a square "Caputo, Khames, Knippel (2019)")

Let v be an eigenvector of A(G) affording an eigenvalue \. Let G' be the graph
obtained from G by deleting an edge ij such that v; = —v; and adding two soft
nodes k, | € V(G') for the extension v’ of v (i.e. v), = vy, for m € V(G) and

v, = v/ = 0) and four edges ik, kj, il, Ij.

Then, v’ is an eigenvector of A(G') for the eigenvalue .
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Characterization of bivalent graphs

Definition (Regular graph)

A graph is d-regular if each node of the graph has the degree d.

Definition (Bipartite graph)

a graph whose vertices can be partitioned into two different independent sets so
that no two vertices within the same set are adjacent.

Theorem (Bivalent graphs "Caputo, Khames, Knippel (2019)")

The bivalent graphs are the regular bipartite graphs and their extensions obtained
by adding edges between nodes with the same value for a bivalent eigenvector.
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Examples of bivalent graphs

-1 1

—

(d = 1)-regular.

(d = 2)-regular.
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(d = 3)-regular.



Soft regular graph

Definition (Soft regular graph)

A graph is d-soft regular if there exist an eigenvector v of the graph Laplacian
such that the non-soft nodes of v each have degree d.

1 o
a a1
-1 T 1
o
o
a
Soft regular
T a
non-soft regular
o
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Characterization of trivalent graphs

Theorem (Trivalent graphs "Caputo, Khames, Knippel (2019)")

Trivalent graphs are obtained from soft regular graphs by applying on the same
trivalent eigenvector the transformations :

@ add link between two equal nodes,
@ principle of reduction and extension

@ replace an edge by a soft square.
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@ |Intersite nonlinearity: nonlinear normal modes
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Intersite nonlinearity: nonlinear normal modes

Ansatz
u(r) = 3i(e) v/, (31)
. . . A3
avi=-Navl —at Y- (V- v) . (32)
k~i

(i) if v,’ = 0 (soft nodes), then we have

(ii) if v/ # 0 then
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Bivalent graphs yielding NNM

1 . N3
== (V=) (36)
Vi it
Bivalent graph — regular bipartite graph
Removing links between equal nodes
independant of the vertex /.
1 -1 1 -1
1 -1 1 -1
A=2 A=2

25/29



Trivalent-soft-regular graphs yielding NNM

For nonsoft nodes

i k~oi
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Trivalent graphs not yielding NNM
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Bipartite complete graph

Definition (Complete bipartite graph K, y—_,)

A complete bipartite graph K, y_n is such that every vertex of the set {1,...n} is
connected to every vertex of the set {n+1,... N}.

1 . N3
=g (v-v) =W (39)
85 M3 5 S

Star graphs Ky nv_1
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Conclusions

@ Arbitrary networks with cubic couplings : the FPUT model.

o Graphs yielding nonlinear normal modes

e On-site nonlinearity: bivalent, trivalent graphs

o Intersite nonlinearity: bivalent, trivalent soft regular, complete bipartite graphs.

o Characterization of bivalent and trivalent graphs.
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