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THE GENESIS:
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D.R. Gulevich and E. V. Kusmartsev

Department of Physics, Loughborough University, Leicestershire LEl1l 3TU, United Kingdom
(Received 30 March 2006; published 7 July 20006)

We describe a novel effect related to the controlled birth of a single Josephson vortex. In this
phenomenon, the vortex is created in a Josephson transmission line at a T-shaped junction. The
“baby” vortex arises at the moment when a “mother’ vortex propagating in the adjacent transmission
line passes the T-shaped junction. In order to give birth to a new vortex, the mother vortex must have
enough kinetic energy. Its motion can also be supported by an externally applied driving current. We
determine the critical velocity and the critical driving current for the creation of the baby vortices and
briefly discuss the potential applications of the found effect.
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The main finding:

FIG. 2 (color online). (a) Reflection of an incident fluxon propagating with velocity u = 0.7 and (b) cloning of a fluxon propagating
with velocity 0.8 higher than the critical u,. = 0.76 (normalized to the Swihart velocity ¢). Both diagrams represent numerical
simulations of the superconducting phase difference for the geometry in Fig. 1(a) with the use of the 2D sine-Gordon equation. The
driving current 1s absent. The color scale represents the superconducting phase difference ¢.




Our (first) work with JGC:

PHYSICAL REVIEW E 90, 022912 (2014)

Nonlinear waves in networks: Model reduction for the sine-Gordon equation

Jean-Guy Caputo”
Laboratoire de Mathématiques, INSA de Rouen, 76801 Saint-Etienne du Rouvray, France

vl Denys Dutykh'
e TAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France
| (Received 26 February 2014; revised manuscript received 18 June 2014; published 25 August 2014)

To study how nonlinear waves propagate across Y- and T-type junctions, we consider the two-dimensional |
! (2D) sine-Gordon equation as a model and examine the crossing of kinks and breathers. Comparing energies
for different geometries reveals that, for small widths, the angle of the fork plays no role. Motivated by this, we
. introduce a one-dimensional effective model whose solutions agree well with the 2D simulations for kink and
breather solutions. These exhibit two different behaviors: a kink crosses if it has sufficient energy; conversely a
breather crosses when v = 1 — w, where v and w are, respectively, its velocity and frequency. This methodology B
can be generalized to more complex nonlinear wave models.

2 DOI: 10.1103/PhysRevE.90.022912 PACS number(s): 05.45.Yv, 74.81.Fa |
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The target geometry
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FIG. 2. (Color online) Sketch of the tree geometry for the
effective model.

ketch of the computational domain £2.
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GOVERNING EQUATIONS (2D):

We consider the 2D sine-Gordon equation

Ot — A@ + singp = 0, (1)

* ) .
on a bounded domain 2 C R~ with Neuman boundary

conditions.
Vo -n=0,

where n 1s an exterior normal. The 7 subscript indicates the time
dertvative and A 1s the usual Laplacian in spatial coordinates.
This equation conserves the energy:

—@ + ;‘?gﬁ?" + (I —cosg) | dxdy.




GOVERNING EQUATIONS (1D):

Continuity argument:

plx =1)=¢*(x =0) = ¢°(x =0)

At discrete level?




Derivation of "Kirchoff" law:
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/ (@i +sme)dxdy — / Vo -nds =0
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—wi(@y — @) + wr(@r — @s) + w3(@s — @q) =0
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ENERGY
CONSERVATION
IN FEM:
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FIG. 4. (Color online) Relative energy |&, — (&,)]/(&,) as a
function of time for the 2D finite element solution of a breather
propagating in a 2D domain.
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Simulations




ENERGY OF A KINK

Let us first consider the kink. its energy 1s

. i In the sine-Gordon equation
& = BV,

8 8 s
W) = 2w, ._ (13)
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where we assume w, = ws. This expression gives a critical

CRITICAL VELOCITY: velocity v; for which v, = 0:

Based on the energy conservation principle




CRITICAL VELOCITY ESTIMATION

BASED ON THEORY AND NUMERICAL SIMULATIONS

TABLE I. Kink critical velocities for the 2D model. the 1D
effective model. and the energy estimate as a function of «. The
widths of the branches are w; = 1 and w, = w; = w; + «.

o 2D v, D v, v From Eq. (14)
0.3 0.98 0.99 0.92

0.1 0.965 0.955 0.89

0 0.92 0.94 0.86

—0.1 0.885 0.85 0.83

—0.3 0.73 0.71 0.7
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COMPARISON 1D/2D MODELS:

14 T T T T T
12 % :
\
10 n ‘.1|I _
S 8 \ :
0 ‘a
g 6 | _es—8—a—a
4 | 2 -
5 / ?ﬁ\
- [N 4
O I_I_/ |“h\¥‘----:—-|-3i.¢-——-- reweshl wiewr s

0 5 10 15 20 25 30

FIG. 7. (Color online) Time evolution of the energy for the kink
motion in branches I and 2 for the T junction, shown as the solid
line (red online), and for the Y junction, shown as the dashed line.
The energy for the 1D effective model is plotted with points. The
parameters are the same as those in Figs. 5 and 6.
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FIG. 10. (Color online) Time evolution of the energy in branches
I and 2 for a breather for the 2D partial differential equation, shown
as the solid line (red online), and the 1D effective model, shown as
the dashed line. The parameters are w; = w, = w3z =1, v; = 0.8,
w; = 0.3, and xo = 10.
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BREATHER

COMPARISON WITH
ANALYTICAL SOLUTION
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FIG. 12. (Color online) Snapshots of the breather analytical so-
lution (dashed line) together with the numerical solution (continuous
line), in branch 1 before the collision [panels (a) and (b)], in branch
1 after the collision [panels (¢) and (d)], and in branch 2 [panels (e)
and (f)]. The corresponding times are + = 20.2, 40.4, 80.8, 90.9 for
panels (a)—(d) and r = 80.8, 90.9 for panels (e) and (f).
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THE NEXT STEP:

symmetry
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Simulations




GOOD NEWS:
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t!
Figure 12. Time evolution of the mass and energy quantities 6m (black online) and e (red online) for
a/d = 0.1.
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BAD NEWS:

Figure 15. Time evolution of the mass and energy quantities 6m (black online) and ée (purple online)

fora/d = 2.
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Possible reasons:

VECTORIAL NON-INTEGRABLE DISCONTINUOUS NON-UNICITY
SOLUTIONS (IN 2D)

NSWE are multi- No Lax pair exists for

component comparing NSWE. Thus, only a finite Solutions will evolve in In certain situations the
fo the sine-Gordon number of conserved general into a shock- weak solutions are

current wave in finite time known to be non-unique
in NSWE and in
isentropic Euler

equations
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A FEW WORDS ON THE LAST POINT:

It is also well-known that hyperbolic systems of conservation laws develop discontinuities
in finite time even if we start from smooth initial data [59|. In water wave theory they
arc known as hydraulic jumps (or undular bores®) [93]. This phenomenon is known as the
gradient catastrophe or breakdown of classical solutions. This obstacle was overcome by
introducing the so-called weak solutions. Unfortunately, weak solutions fail to be unique.
The help comes from Physics, namely from the second law of Thermodynamics. One can
stipulate that admissible solutions satisty some additional entropy inequalities. The quest
for well-posedness theory of the CAUCHY problem for hyperbolic conservation laws is more
than one century old. Unfortunately, it was shown recently in [14] that entropy conditions
do not single out unique weak solutions in 2D even under very strong assumptions on the
initial data (pg. vo) € WH* (R?) (here || = V) [16]:

Theorem 1. There are LIPSCHITZ continuous initial data (pg, vo) for which there are
infinitely many bounded admissible solutions (p. v) to System (2.72), (2.73) on R* x R
with inf p > 0. These solutions are locally LIPSCHITZ on a finite interval on which they
all coincide with the unique classical solution.

The solutions described in the last Theorem were called non-standard solutions in [15].




Some awkward questions:

e How to define weak solutions in 2D (and
3D, ...) to recover their unicity?

° What do we compute in our multi-D
simulations?
. What about other nonlinear PDES?

We dowf hawe Lo answen Toduy!
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If you have any further questions:
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