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Introduction

•Lagrangian variation analysis of perturbed solitons. 
Exemplified by the Nonlinear Schrödinger  (NLS) equation. 

•Vortices in type II superconductors modelled by the 
Ginzburg-Landau equations. Application to pinning of 
vortices on impurities. Dynamics of vortices in 
superconductors with pinning sites. 
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The Nonlinear Schrödinger (NLS) Equation

4

NLS equation.

Simple soliton solution.

The perturbed NLS equation.

Damping and laser power input.

Ref.: Amplification of ultrashort solitons in erbium-doped fiber amplifiers, (G. P. Agrawal). IEEE Photon. 
Technol. Lett. 2, (1990) pp. 875–877

𝑖𝑢𝑧 +  𝑢𝑡𝑡 + 2 𝑢 2𝑢 = 0

𝑢(𝑧, 𝑡) = 𝜌(𝑧, 𝑡)𝑒𝑖𝜑(𝑧, 𝑡) =  𝜂sech(𝜂𝜃)exp(𝑖(𝜉𝜃 + 𝜎))

𝜃 = 𝑡 − 𝑡0 − 2𝜉𝑧 𝜎 = (𝜂2 + 𝜉2)𝑧  −  𝜎0

𝑖𝑢𝑧 +  𝑢𝑡𝑡 + 2 𝑢 2𝑢 = 𝜀𝑅(𝑢)

𝜀𝑅(𝑢) = − 𝑖Γ𝑢 +  
𝑖𝑔0

1 + ( 𝑃
𝑃𝑠 )

(𝑢 + 𝑤
𝜕2𝑢
𝜕𝑡2

)

𝑃 =
∞

∫
−∞

𝑢(𝑧, 𝑡)
2
𝑑𝑡



20 June 2022DTU Compute, Technical University of Denmark

The Perturbed NLS Equation
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Further perturbation terms includes: 1) Higher order dispersions

2) Raman gain.

Perturbation analysis. Collective coordinate approach.

Collective coordinate approach. Variational method invoking generalized 
forces associated with each collective coordinate. 

Ref.: Ring laser configuration studied by collective coordinates, (Caputo, Flytzanis, Sørensen). J. Opt. 
Soc. Am. B, Vol. 12 (1) (1995), 139-145

{𝜂, 𝜉, 𝑡0, 𝜎0} = {𝑦1(𝑧), 𝑦2(𝑧), 𝑦3(𝑧), 𝑦4(𝑧)}
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Lagrangian, Momentum, Hamiltonian
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The Lagrangian density:

The momentum density:

𝑝 =
𝜕ℒ
𝜕𝑢𝑧

=   +
𝑖
2

𝑢∗

ℒ =
𝑖
2 (𝑢∗𝑢𝑧 −  𝑢∗

𝑧𝑢) − 𝑢𝑡
2

+ 𝑢 4

𝑝∗ =
𝜕ℒ
𝜕𝑢∗

𝑧
= −

𝑖
2

𝑢

The Hamiltonian:

ℋ = 𝑢𝑧𝑝 + 𝑢∗
𝑧 𝑝∗ − ℒ
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The Collective Coordinate Approach
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The total energy:

The total Lagrangian:

𝐿 =
∞

∫
−∞

ℒ(𝑢, 𝑢∗, 𝑢𝑧, 𝑢∗
𝑧 , 𝑢𝑡, 𝑢∗

𝑡 )𝑑𝑡 = 𝐿(𝑦𝑖(𝑧),  𝑦′ 𝑖(𝑧))

The Euler Lagrange equations for the collective coordinates reads:

𝐸 =
∞

∫
−∞

ℋ(𝑧, 𝑡)𝑑𝑡 = 2𝜂𝜉2 −
2
3

𝜂3

𝑖 = 1,2, 3,4

𝜕𝐿
𝜕𝑦𝑖

−
𝑑
𝑑𝑧 ( 𝜕𝐿

𝜕𝑦′ 𝑖 ) =  𝜀
∞

∫
−∞

𝑅
𝜕𝑢∗

𝜕𝑦𝑖
 𝑑𝑡 + 𝑐 . 𝑐 .
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The Collective Coordinate Approach
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Differentiation rules:

Note:

Partial integration

𝑖 = 1,2, 3,4

𝑢 = 𝑢(𝑧, 𝑡; 𝑦𝑖(𝑧))

-  
∞

∫
−∞

𝜕ℒ
𝜕𝑢𝑡

𝜕𝑢𝑡

𝜕𝑦𝑖
𝑑𝑡 =

∞

∫
−∞

𝜕ℒ
𝜕𝑢𝑡

𝜕
𝜕𝑡 ( 𝜕𝑢

𝜕𝑦𝑖 )𝑑𝑡 =
𝜕ℒ
𝜕𝑢𝑡 ( 𝜕𝑢

𝜕𝑦𝑖 )
∞

−∞

∞

∫
−∞

𝜕
𝜕𝑡 ( 𝜕ℒ

𝜕𝑢𝑡 ) 
𝜕𝑢
𝜕𝑦𝑖

𝑑𝑡

𝜕𝐿
𝜕𝑦𝑖

=  
∞

∫
−∞

{ 𝜕ℒ
𝜕𝑢

𝜕𝑢
𝜕𝑦𝑖

+
𝜕ℒ
𝜕𝑢𝑧

𝜕𝑢𝑧

𝜕𝑦𝑖
+

𝜕ℒ
𝜕𝑢𝑡

𝜕𝑢𝑡

𝜕𝑦𝑖 }𝑑𝑡 + 𝑐 . 𝑐 .

 =   
𝜕𝐿
𝜕𝑦′ 𝑖

=  
∞

∫
−∞

{ 𝜕ℒ
𝜕𝑢𝑧

𝜕𝑢𝑧

𝜕𝑦′ 𝑖 }𝑑𝑡 + 𝑐 . 𝑐 .
∞

∫
−∞

{ 𝜕ℒ
𝜕𝑢𝑧

𝜕𝑢
𝜕𝑦𝑖 }𝑑𝑡 + 𝑐 . 𝑐 .

du
dz

= uz(z, t; yi(z), y′ i(z))
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The Collective Coordinate Approach
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We need to calculate:

𝑖 = 1,2, 3,4

𝜕
𝜕𝑧 ( 𝜕L

𝜕𝑦′ 𝑖 ) =
∞

∫
−∞

𝜕
𝜕𝑧 { 𝜕ℒ

𝜕𝑢𝑧

𝜕𝑢
𝜕𝑦𝑖 }𝑑𝑡 =

∞

∫
−∞

𝜕
𝜕𝑧 ( 𝜕ℒ

𝜕𝑢𝑧 ) 𝜕𝑢
𝜕𝑦𝑖

+
𝜕ℒ
𝜕𝑢𝑧

𝜕
𝜕𝑧 ( 𝜕𝑢

𝜕𝑦𝑖 ) 𝑑𝑡

The Euler Lagrange equations for the collective coordinates reads:

 
𝜕𝐿
𝜕𝑦𝑖

−
𝑑

𝑑𝑧 ( 𝜕𝐿
𝜕𝑦′ 𝑖 ) =

∞

∫
−∞

{ 𝜕ℒ
𝜕𝑢

𝜕𝑢
𝜕𝑦𝑖

+
𝜕ℒ
𝜕𝑢𝑧

𝜕𝑢𝑧

𝜕𝑦𝑖
−

𝜕
𝜕𝑡 ( 𝜕ℒ

𝜕𝑢𝑡 ) 𝜕𝑢
𝜕𝑦𝑖 }𝑑𝑡

−
∞

∫
−∞

𝜕
𝜕𝑧 ( 𝜕ℒ

𝜕𝑢𝑧 ) 𝜕𝑢
𝜕𝑦𝑖

+
𝜕ℒ
𝜕𝑢𝑧

𝜕
𝜕𝑧 ( 𝜕𝑢

𝜕𝑦𝑖 ) 𝑑𝑡 +  𝑐 . 𝑐
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The Collective Coordinate Approach

10

From this we obtain the dynamical equations for the collective coordinates:

𝑖 = 1,2, 3,4
 

𝜕𝐿
𝜕𝑦𝑖

−
𝑑

𝑑𝑧 ( 𝜕𝐿
𝜕𝑦′ 𝑖 ) =

∞

∫
−∞

𝜕ℒ
𝜕𝑢

−
𝜕

𝜕𝑧 ( 𝜕ℒ
𝜕𝑢𝑧 ) −

𝜕
𝜕𝑡 ( 𝜕ℒ

𝜕𝑢𝑡 ) 𝜕𝑢
𝜕𝑦𝑖

𝑑𝑡 + 𝑐 . 𝑐 .

=  𝜀
∞

∫
−∞

𝑅∗ 𝜕𝑢
𝜕𝑦𝑖

 𝑑𝑡 + 𝑐 . 𝑐 .
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Example: The ring laser configuration
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Higher order dispersion and nonlinearities have been included in the model of the 
fiber ring laser

Ref.: Ring laser configuration studied by collective coordinates, (Caputo, Flytzanis, Sørensen). J. Opt. 
Soc. Am. B, Vol. 12 (1) (1995), 139-145
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Example: The ring laser configuration
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The dynamical equations for the collective coordinates

Ref.: Ring laser configuration studied by collective coordinates, (Caputo, Flytzanis, Sørensen). J. Opt. 
Soc. Am. B, Vol. 12 (1) (1995), 139-145

To each collective coordinate is an associated generalized force, resulting from 
the perturbations. 

𝑑𝜂
𝑑𝑡

= − 2Γ𝜂 +
2𝑔0𝜂

1 + 2𝜂2 /𝑝𝑠

𝑑𝜉
𝑑𝑡

= 0

𝑑𝜎
𝑑𝑡

= 𝜂2 + 𝜉2
𝑑𝜃
𝑑𝑡

= − 2𝜉
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Numerical example
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Numerical simulations of the full PDE compared to the dynamical equations for 
the collective coordinates
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The Time Dependent Ginzburg-Landau Model
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The Dynamics of Magnetic Vortices in Type II Superconductors Studied by the 
Time Dependent Ginzburg‐Landau Model

Ref.: On the Theory of Superconductivity. V.L. Ginzburg and L.D. Landau. JZh. Eksp. Teo. Fiz., 20, 
p1064 (1959)

𝛼(𝑇 ) = 𝛼(0)(1 − 𝑇 /𝑇𝑐)

Gs = Gn − α(T ) |Ψ |2 +
β
2

|Ψ |4
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The Time Dependent Ginzburg-Landau Model
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The Ginzurg-Landau equation in nondimensional coordinates and after the 
coulomb gauge transformation reads

Ref.: Magnetic Flux Lines in Complex Geometry Type-II Superconductors Studied by the Time 
Dependent Ginzburg-Landau Equation. T.S. Alstrøm, M.P.Sørensen, N.F. Pedersen and S. Madsen. Acta 
Appl Math, 2010, 1-12.

𝜓(𝑥, 𝑦, 𝑡)

𝜕𝜓
𝜕𝑡

= − ( 𝑖
𝜅

𝛻 + 𝐴)
2

𝜓  +  𝜓 − 𝜓
2
𝜓

𝜎
𝜕𝐴
𝜕𝑡

=
1

2𝑖𝜅 (𝜓∗𝛻𝜓 − 𝜓𝛻𝜓∗) − Ψ
2
𝐴 − 𝛻 × 𝛻 × 𝐴

𝐴(𝑥, 𝑦, 𝑡)
is the order-parameter for the superconducting Cooper pair condensate

is the magnetic vector potential
𝜅 = 𝜆 /𝜉 is the Ginzburg-Landau parameter

in Ω
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The Time Dependent Ginzburg-Landau Model
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The superconducting current is

Ref.: Self-consistent Ginzburg-Landau theory for transport currents in superconductors. M. Ögren, 
M.P.Sørensen, N.F. Pedersen. Physica C, 479 (2012) 157-159.

( 𝑖
𝜅
 ∇+𝐴)𝜓 ∙ 𝑛 = 0 𝛻 × 𝐴 = 𝐵𝑒𝑥𝑡

The normal current is 𝐽𝑛 = − 𝜎𝜕𝑡𝐴

We obtain the boundary conditions on

𝐽𝑛 ∙ 𝑛 = − 𝜎𝜕𝑡𝐴 ∙ 𝑛 = 0

𝜕Ω

Js =
1

2iκ
(ψ*∇ψ − ψ ∇ψ*) − |ψ |2 A
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Energy densities
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The superconducting energy is

Ref.: Self-consistent Ginzburg-Landau theory for transport currents in superconductors. M. Ögren, 
M.P.Sørensen, N.F. Pedersen. Physica C, 479 (2012) 157-159.

𝐻𝑠𝑢𝑝 =
1
𝜅2

𝛻𝜓
2

− 𝜓
2

+
1
2

𝜓
4

The magnetic energy is 𝐻𝑚𝑎𝑔 = (𝐵𝑒𝑥𝑡 − 𝛻 × 𝐴)2

The interaction energy is 𝐻𝑖𝑛𝑡 =
𝑖
𝜅

𝐴(𝜓∗𝛻𝜓 − 𝜓𝛻𝜓∗) + 𝐴
2

𝜓
2

The total energy is
𝐻 = ∫

Ω

(𝐻𝑠𝑢𝑝 +  𝐻𝑚𝑎𝑔 +  𝐻𝑖𝑛𝑡)𝑑Ω
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Numerical method
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Finite element programme by COMSOL Multiphysics, using quadratic Lagrange 
elements.

Ref.: The Ginzburg Landau Equation Solved by the Finite Element Method . T.S. Larsen, et al.. Proc. of 
the Nordic COMSOL Conference, Nov. 1-2, 2006, Kgs. Lyngby, Denmark. Ed. L. Gregersen, pp 75-78, 
2007.

The complex valued function ψ is split into its real and imaginary 
parts. Vector A has two components. Total of four coupled PDEs. 

Complex shapes of the superconductors

in Ω

Boundary conditions on 𝜕Ω

da
∂u
∂t

+ ∇ ⋅ Γ = F

−n ⋅ Γ = G
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Numerical result
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Square superconductor

𝜓(𝑥, 𝑦, 𝑡)

𝐵𝑒𝑥𝑡 = 0.75

𝜅 = 4
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Numerical result
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Circular superconductor with an indent

𝜓(𝑥, 𝑦, 𝑡)

𝐵𝑒𝑥𝑡 = 0.8

𝜅 = 4
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Numerical result
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Josephson weak link

𝜓(𝑥, 𝑦, 𝑡)

𝐵𝑒𝑥𝑡 = 0.8 𝜅 = 4 𝑡 = 500

𝜑 = tan−1( 𝐼𝑚(𝜓)
𝑅𝑒(𝜓) )
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Pinning sites for vortices
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Phenomenological model for the Gibbs energy

𝐺𝑠 = 𝐺𝑛 − 𝛼0(𝑟)(1 −
𝑇
𝑇𝑐 )  𝜓

2
+

𝛽
2

𝜓
4

Ref.: The dynamics of magnetic vortices in type II superconductors with pinning sites studied by the 
time dependent Ginzburg–Landau model. M. P. Sørensen a , N. F. Pedersen and M. Ögren, Physica C: 
Superconductivity and its applications 533 (2017) 40–43
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How to make a permanent type II high-Tc magnet by 
pinning?

23

Place the type II superconductor with pinning sites in an external 
magnetic field, which is raised from zero to above the first critical 
magnetic field strength.

The superconductor is now magnitized

Remove the magnetic field. 

For sufficiently strong pinning sites, vortices will remain bounded on 
the pinning sites, leaving the superconductor a permanent magnet.
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Pinning sites for vortices
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Phenomenological model in dimension-less units

 𝑓(𝑟) = ∏
𝑁

𝑘=1
𝑓𝑘(𝑟)

𝑓𝑘(𝑟) = tanh 
  𝑟 − 𝑟0𝑘 − 𝑅𝑘

𝑤𝑘

𝜕𝜓
𝜕𝑡

= − ( 𝑖
𝜅

𝛻 + 𝐴)
2

𝜓  + 𝑓(𝑟) 𝜓 − 𝜓
2
𝜓

Ref.: The dynamics of magnetic vortices in type II superconductors with pinning sites studied by the 
time dependent Ginzburg–Landau model. M. P. Sørensen a , N. F. Pedersen and M. Ögren, Physica C: 
Superconductivity and its applications 533 (2017) 40–43

and with
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Numerical results
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Numerical results
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Summary
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1) Variational approach for the time evolution of the 
collective coordinates of solitons. Exemplified by the 
perturbed NLS equation

2) Generalized forces associated with each collective 
coordinate.

3) Fiber ring laser

1) The time dependent Ginzburg Landau equations implemented in 
Comsol Multiphysics

2) Dynamics of penetrating magnetic vortices into a type II 
superconductor

3) Vortex dynamics in presence of defects

4) Permanent type II superconducting magnet


